

 Navigation

 	
 index

 	
 next |

 	pluginmanager 0.1.8 documentation

pluginmanager

[image: Build Status] [https://travis-ci.org/benhoff/pluginmanager] [image: Coverage Status] [https://coveralls.io/github/benhoff/pluginmanager?branch=master] [image: Code Climate] [https://codeclimate.com/github/benhoff/pluginmanager]

python plugin management, simplified.

Source Code [https://github.com/benhoff/pluginmanager]

Library under development. Contains rough edges/unfinished functionality. API subject to changes.

Installation

pip install pluginmanager

-or-

pip install git+https://github.com/benhoff/pluginmanager.git

Quickstart

from pluginmanager import PluginInterface

plugin_interface = PluginInterface()
plugin_interface.set_plugin_directories(plugin_directory_path)
plugin_interface.collect_plugins() # doctest: +SKIP

plugins = plugin_interface.get_instances()
print(plugins) # doctest: +SKIP +HIDE

Custom Plugins

The quickstart will only work if you subclass IPlugin for your custom plugins.

import pluginmanager

class MyCustomPlugin(pluginmanager.IPlugin):
 def __init__(self):
 self.name = 'custom_name'
 super().__init__()

Or register your class as subclass of IPlugin.

import pluginmanager

pluginmanager.IPlugin.register(YourClassHere)

Add Plugins Manually

Add classes.

import pluginmanager

class CustomClass(pluginmanager.IPlugin):
 pass

plugin_interface = pluginmanager.PluginInterface()
plugin_interface.add_plugins(CustomClass)

plugins = plugin_interface.get_instances()
print(plugins) # doctest: +SKIP

Alternatively, add instances.

import pluginmanager

class CustomClass(pluginmanager.IPlugin):
 pass

custom_class_instance = CustomClass()

plugin_interface = pluginmanager.PluginInterface()
plugin_interface.add_plugins(custom_class_instance)

plugins = plugin_interface.get_instances()
print(plugins) # doctest: +SKIP

pluginmanager is defaulted to automatically instantiate unique instances. Disable automatic instantiation.

import pluginmanager

plugin_interface = pluginmanager.PluginInterface()
plugin_manager = plugin_interface.plugin_manager

plugin_manager.instantiate_classes = False

Disable uniqueness (Only one instance of class per pluginmanager)

import pluginmanager

plugin_interface = pluginmanager.PluginInterface()
plugin_manager = plugin_interface.plugin_manager

plugin_manager.unique_instances = False

Filter Instances

Pass in a class to get back just the instances of a class

import pluginmanager

class MyPluginClass(pluginmanager.IPlugin):
 pass

plugin_interface = pluginmanager.PluginInterface()
plugin_interface.add_plugins(MyPluginClass)

all_instances_of_class = plugin_interface.get_instances(MyPluginClass)
print(all_instances_of_class) # doctest: +SKIP

Alternatively, create and pass in your own custom filters. Either make a class based filter

create a custom plugin class
class Plugin(pluginmanager.IPlugin):
 def __init__(self, name):
 self.name = name

create a custom filter
class NameFilter(object):
 def __init__(self, name):
 self.stored_name = name

 def __call__(self, plugins):
 result = []
 for plugin in plugins:
 if plugin.name == self.stored_name:
 result.append(plugin)
 return result

create an instance of our custom filter
mypluginclass_name_filter = NameFilter('good plugin')

plugin_interface = pluginmanager.PluginInterface()
plugin_interface.add_plugins([Plugin('good plugin'),
 Plugin('bad plugin')])

filtered_plugins = plugin_interface.get_instances(mypluginclass_name_filter)
print(filtered_plugins[0].name) # doctest: +SKIP

Or make a function based filter

create a custom plugin class
class Plugin(pluginmanager.IPlugin):
 def __init__(self, name):
 self.name = name

create a function based filter
def custom_filter(plugins):
 result = []
 for plugin in plugins:
 if plugin.name == 'good plugin':
 result.append(plugin)
 return result

plugin_interface = pluginmanager.PluginInterface()
plugin_interface.add_plugins([Plugin('good plugin'),
 Plugin('bad plugin')])

filtered_plugins = plugin_interface.get_instances(mypluginclass_name_filter)
print(filtered_plugins[0].name)

	API Reference
	PluginInterface

	FileManager

	DirectoryManager

	ModuleManager

	PluginManager

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Ben Hoff.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pluginmanager 0.1.8 documentation

API Reference

	PluginInterface

	FileManager

	DirectoryManager

	ModuleManager

	PluginManager

 Copyright 2015, Ben Hoff.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pluginmanager 0.1.8 documentation

 	API Reference

PluginInterface

	
class pluginmanager.PluginInterface(**kwargs)[source]

	
	
add_blacklisted_directories(directories, rm_black_dirs_from_stored_dirs=True)[source]

	Adds directories to be blacklisted. Blacklisted directories will not
be returned or searched recursively when calling the
collect_directories method.

directories may be a single instance or an iterable. Recommend
passing in absolute paths, but method will try to convert to absolute
paths based on the current working directory.

If remove_from_stored_directories is true, all directories
will be removed from internal state.

	
add_blacklisted_filepaths(filepaths, remove_from_stored=True)[source]

	Add filepaths to blacklisted filepaths.
If remove_from_stored is True, any filepaths in
internal state will be automatically removed.

	
add_blacklisted_plugins(plugins)[source]

	add blacklisted plugins.
plugins may be a single object or iterable.

	
add_file_filters(file_filters)[source]

	Adds file_filters to the internal file filters.
file_filters can be single object or iterable.

	
add_module_plugin_filters(module_plugin_filters)[source]

	Adds module_plugin_filters to the internal module filters.
May be a single object or an iterable.

Every module filters must be a callable and take in
a list of plugins and their associated names.

	
add_plugin_directories(paths, except_blacklisted=True)[source]

	Adds directories to the set of plugin directories.

directories may be either a single object or a iterable.

directories can be relative paths, but will be converted into
absolute paths based on the current working directory.

if except_blacklisted is True all directories in
that are blacklisted will be removed

	
add_plugin_filepaths(filepaths, except_blacklisted=True)[source]

	Adds filepaths to internal state. Recommend passing
in absolute filepaths. Method will attempt to convert to
absolute paths if they are not already.

filepaths can be a single object or an iterable

If except_blacklisted is True, all filepaths that
have been blacklisted will not be added.

	
add_plugins(plugins)[source]

	Adds plugins to the internal state. plugins may be a single
object or an iterable.

If the instance member instantiate_classes in the underlying
member plugin_manager is True and the plugins
have class instances in them, attempts to instatiate the classes.
Default is True

This can be checked/changed by:

plugin_interface.plugin_manager.instantiate_classes

If the instance member unique_instances in the underlying member
plugin_manager is True and duplicate instances are passed in,
this method will not track the new instances internally.
Default is True

This can be checked/changed by:

plugin_interface.plugin_manager.unique_instances

	
add_to_loaded_modules(modules)[source]

	Manually add in modules to be tracked by the module manager.

modules may be a single object or an iterable.

	
get_blacklisted_directories()[source]

	Returns the set of the blacklisted directories.

	
get_blacklisted_filepaths()[source]

	Returns the blacklisted filepaths as a set object.

	
get_blacklisted_plugins()[source]

	gets blacklisted plugins tracked in the internal state
Returns a list object.

	
get_file_filters(filter_function=None)[source]

	Gets the file filters.
filter_function, can be a user defined filter. Should be callable
and return a list.

	
get_instances(filter_function=<class 'pluginmanager.iplugin.IPlugin'>)[source]

	Gets instances out of the internal state using
the default filter supplied in filter_function.
By default, it is the class IPlugin.

Can optionally pass in a list or tuple of classes
in for filter_function which will accomplish
the same goal.

lastly, a callable can be passed in, however
it is up to the user to determine if the
objects are instances or not.

	
get_loaded_modules()[source]

	Returns all modules loaded by this instance.

	
get_module_plugin_filters(filter_function=None)[source]

	Gets the internal module filters. Returns a list object.

If supplied, the filter_function should take in a single
list argument and return back a list. filter_function is
designed to given the option for a custom filter on the module filters.

	
get_plugin_directories()[source]

	Returns the plugin directories in a set object

	
get_plugin_filepaths()[source]

	returns the plugin filepaths tracked internally as a set object.

	
get_plugins(filter_function=None)[source]

	Gets out the plugins from the internal state. Returns a list
object.

If the optional filter_function is supplied, applies the filter
function to the arguments before returning them. Filters should
be callable and take a list argument of plugins.

	
remove_blacklisted_directories(directories)[source]

	Attempts to remove the directories from the set of blacklisted
directories. If a particular directory is not found in the set of
blacklisted, method will continue on silently.

directories may be a single instance or an iterable. Recommend
passing in absolute paths. Method will try to convert to an absolute
path if it is not already using the current working directory.

	
remove_blacklisted_filepaths(filepaths)[source]

	Removes filepaths from blacklisted filepaths.
filepaths may be a single filepath or iterable of filepaths.
recommend passing in absolute filepaths but method will attempt
to convert to absolute filepaths based on current working directory.

	
remove_blacklisted_plugins(plugins)[source]

	removes plugins from the blacklisted plugins.
plugins may be a single object or iterable.

	
remove_file_filters(file_filters)[source]

	Removes the file_filters from the internal state.
file_filters can be a single object or an iterable.

	
remove_module_plugin_filters(module_plugin_filters)[source]

	Removes module_plugin_filters from the internal module filters.
If the filters are not found in the internal representation,
the function passes on silently.

module_plugin_filters may be a single object or an iterable.

	
remove_plugin_directories(paths)[source]

	Removes any directories from the set of plugin directories.

directories may be a single object or an iterable.

Recommend passing in all paths as absolute, but the method will
attemmpt to convert all paths to absolute if they are not already
based on the current working directory.

	
remove_plugin_filepaths(filepaths)[source]

	Removes filepaths from internal state.
Recommend passing in absolute filepaths. Method will
attempt to convert to absolute paths if not passed in.

filepaths can be a single object or an iterable.

	
remove_plugins(plugins)[source]

	removes plugins from the internal state

plugins may be a single object or an iterable.

	
set_blacklisted_directories(directories, rm_black_dirs_from_stored_dirs=True)[source]

	Sets the directories to be blacklisted. Blacklisted directories will
not be returned or searched recursively when calling
collect_directories.

This will replace the previously stored set of blacklisted
paths.

directories may be a single instance or an iterable. Recommend
passing in absolute paths. Method will try to convert to absolute path
based on current working directory.

	
set_blacklisted_filepaths(filepaths, remove_from_stored=True)[source]

	Sets internal blacklisted filepaths to filepaths.
If remove_from_stored is True, any filepaths in
internal state will be automatically removed.

	
set_blacklisted_plugins(plugins)[source]

	sets blacklisted plugins.
plugins may be a single object or iterable.

	
set_file_filters(file_filters)[source]

	Sets internal file filters to file_filters by tossing old state.
file_filters can be single object or iterable.

	
set_module_plugin_filters(module_plugin_filters)[source]

	Sets the internal module filters to module_plugin_filters
module_plugin_filters may be a single object or an iterable.

Every module filters must be a callable and take in
a list of plugins and their associated names.

	
set_plugin_directories(paths, except_blacklisted=True)[source]

	Sets the plugin directories to directories. This will delete
the previous state stored in self.plugin_directories in favor
of the directories passed in.

directories may be either a single object or an iterable.

directories can contain relative paths but will be
converted into absolute paths based on the current working
directory.

if except_blacklisted is True all directories in
blacklisted that are blacklisted will be removed

	
set_plugin_filepaths(filepaths, except_blacklisted=True)[source]

	Sets internal state to filepaths. Recommend passing
in absolute filepaths. Method will attempt to convert to
absolute paths if they are not already.

filepaths can be a single object or an iterable.

If except_blacklisted is True, all filepaths that
have been blacklisted will not be set.

	
set_plugins(plugins)[source]

	sets plugins to the internal state.
If the instance member instantiate_classes in the underlying
member plugin_manager is True and the plugins
have class instances in them, attempts to instatiate the classes.
The default is True

This can be checked/changed by:

plugin_interface.plugin_manager.instantiate_classes

If the instance member unique_instances in the underlying member
plugin_manager is True and duplicate instances are passed in,
this method will not track the new instances internally.
The default is True

This can be checked/changed by:

plugin_interface.plugin_manager.unique_instances

	
track_site_package_paths()[source]

	A helper method to add all of the site packages tracked by python
to the set of plugin directories.

NOTE that if using a virtualenv, there is an outstanding bug with the
method used here. While there is a workaround implemented, when using a
virutalenv this method WILL NOT track every single path tracked by
python. See: https://github.com/pypa/virtualenv/issues/355

 Copyright 2015, Ben Hoff.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pluginmanager 0.1.8 documentation

 	API Reference

FileManager

	
class pluginmanager.FileManager(file_filters=None, plugin_filepaths=None, blacklisted_filepaths=None)[source]

	FileManager manages the file filter state and is responible for
collecting filepaths from a set of directories and filtering the files
through the filters. Without file filters, this class acts as a
passthrough, collecting and returning every file in a given directory.

FileManager can also optionally manage the plugin filepath state through
the use of the add/get/set plugin filepaths methods. Note that plugin
interface is not automatically set up this way, although it is
relatively trivial to do.

	
add_blacklisted_filepaths(filepaths, remove_from_stored=True)[source]

	Add filepaths to blacklisted filepaths.
If remove_from_stored is True, any filepaths in
plugin_filepaths will be automatically removed.

Recommend passing in absolute filepaths but method will attempt
to convert to absolute filepaths based on current working directory.

	
add_file_filters(file_filters)[source]

	Adds file_filters to the internal file filters.
file_filters can be single object or iterable.

	
add_plugin_filepaths(filepaths, except_blacklisted=True)[source]

	Adds filepaths to the self.plugin_filepaths. Recommend passing
in absolute filepaths. Method will attempt to convert to
absolute paths if they are not already.

filepaths can be a single object or an iterable

If except_blacklisted is True, all filepaths that
have been blacklisted will not be added.

	
collect_filepaths(directories)[source]

	Collects and returns every filepath from each directory in
directories that is filtered through the file_filters.
If no file_filters are present, passes every file in directory
as a result.
Always returns a set object

directories can be a object or an iterable. Recommend using
absolute paths.

	
get_blacklisted_filepaths()[source]

	Returns the blacklisted filepaths as a set object.

	
get_file_filters(filter_function=None)[source]

	Gets the file filters.
filter_function, can be a user defined filter. Should be callable
and return a list.

	
get_plugin_filepaths()[source]

	returns the plugin filepaths tracked internally as a set object.

	
remove_blacklisted_filepaths(filepaths)[source]

	Removes filepaths from blacklisted filepaths

Recommend passing in absolute filepaths but method will attempt
to convert to absolute filepaths based on current working directory.

	
remove_file_filters(file_filters)[source]

	Removes the file_filters from the internal state.
file_filters can be a single object or an iterable.

	
remove_plugin_filepaths(filepaths)[source]

	Removes filepaths from self.plugin_filepaths.
Recommend passing in absolute filepaths. Method will
attempt to convert to absolute paths if not passed in.

filepaths can be a single object or an iterable.

	
set_blacklisted_filepaths(filepaths, remove_from_stored=True)[source]

	Sets internal blacklisted filepaths to filepaths.
If remove_from_stored is True, any filepaths in
self.plugin_filepaths will be automatically removed.

Recommend passing in absolute filepaths but method will attempt
to convert to absolute filepaths based on current working directory.

	
set_file_filters(file_filters)[source]

	Sets internal file filters to file_filters by tossing old state.
file_filters can be single object or iterable.

	
set_plugin_filepaths(filepaths, except_blacklisted=True)[source]

	Sets filepaths to the self.plugin_filepaths. Recommend passing
in absolute filepaths. Method will attempt to convert to
absolute paths if they are not already.

filepaths can be a single object or an iterable.

If except_blacklisted is True, all filepaths that
have been blacklisted will not be set.

 Copyright 2015, Ben Hoff.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pluginmanager 0.1.8 documentation

 	API Reference

DirectoryManager

	
class pluginmanager.DirectoryManager(plugin_directories=None, recursive=True, blacklisted_directories=None)[source]

	DirectoryManager manages the recursive search state and can
optionally manage directory state. The default implementation of
pluginmanager uses DirectoryManager to manage the directory state.

DirectoryManager contains a directory blacklist, which can be used to
stop from collecting from uninteresting directories.

DirectoryManager manages directory state through the add/get/set
directories methods.

NOTE: When calling collect_directories the directories must be
explicitly passed into the method call. This is to avoid tight coupling
from the internal state and promote reuse at the Interface level.

	
add_blacklisted_directories(directories, remove_from_stored_directories=True)[source]

	Adds directories to be blacklisted. Blacklisted directories will not
be returned or searched recursively when calling the
collect_directories method.

directories may be a single instance or an iterable. Recommend
passing in absolute paths, but method will try to convert to absolute
paths based on the current working directory.

If remove_from_stored_directories is true, all directories
will be removed from self.plugin_directories

	
add_directories(directories, except_blacklisted=True)[source]

	Adds directories to the set of plugin directories.

directories may be either a single object or a iterable.

directories can be relative paths, but will be converted into
absolute paths based on the current working directory.

if except_blacklisted is True all directories in
self.blacklisted_directories will be removed

	
add_site_packages_paths()[source]

	A helper method to add all of the site packages tracked by python
to the set of plugin directories.

NOTE that if using a virtualenv, there is an outstanding bug with the
method used here. While there is a workaround implemented, when using a
virutalenv this method WILL NOT track every single path tracked by
python. See: https://github.com/pypa/virtualenv/issues/355

	
collect_directories(directories)[source]

	Collects all the directories into a set object.

If self.recursive is set to True this method will iterate through
and return all of the directories and the subdirectories found from
directories that are not blacklisted.

if self.recursive is set to False this will return all the
directories that are not balcklisted.

directories may be either a single object or an iterable. Recommend
passing in absolute paths instead of relative. collect_directories
will attempt to convert directories to absolute paths if they are not
already.

	
get_blacklisted_directories()[source]

	Returns the set of the blacklisted directories.

	
get_directories()[source]

	Returns the plugin directories in a set object

	
remove_blacklisted_directories(directories)[source]

	Attempts to remove the directories from the set of blacklisted
directories. If a particular directory is not found in the set of
blacklisted, method will continue on silently.

directories may be a single instance or an iterable. Recommend
passing in absolute paths. Method will try to convert to an absolute
path if it is not already using the current working directory.

	
remove_directories(directories)[source]

	Removes any directories from the set of plugin directories.

directories may be a single object or an iterable.

Recommend passing in all paths as absolute, but the method will
attemmpt to convert all paths to absolute if they are not already
based on the current working directory.

	
set_blacklisted_directories(directories, remove_from_stored_directories=True)[source]

	Sets the directories to be blacklisted. Blacklisted directories will
not be returned or searched recursively when calling
collect_directories.

This will replace the previously stored set of blacklisted
paths.

directories may be a single instance or an iterable. Recommend
passing in absolute paths. Method will try to convert to absolute path
based on current working directory.

	
set_directories(directories, except_blacklisted=True)[source]

	Sets the plugin directories to directories. This will delete
the previous state stored in self.plugin_directories in favor
of the directories passed in.

directories may be either a single object or an iterable.

directories can contain relative paths but will be
converted into absolute paths based on the current working
directory.

if except_blacklisted is True all directories in
self.blacklisted_directories will be removed

 Copyright 2015, Ben Hoff.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	pluginmanager 0.1.8 documentation

 	API Reference

ModuleManager

	
class pluginmanager.ModuleManager(module_plugin_filters=None)[source]

	ModuleManager manages the module plugin filter state and is responsible
for both loading the modules from source code and collecting the plugins
from each of the modules.

ModuleManager can also optionally manage modules explicitly through
the use of the add/get/set loaded modules methods. The default
implementation is hardwired to use the tracked loaded modules if no
modules are passed into the collect_plugins method.

	
add_module_plugin_filters(module_plugin_filters)[source]

	Adds module_plugin_filters to the internal module filters.
May be a single object or an iterable.

Every module filters must be a callable and take in
a list of plugins and their associated names.

	
add_to_loaded_modules(modules)[source]

	Manually add in modules to be tracked by the module manager.

modules may be a single object or an iterable.

	
collect_plugins(modules=None)[source]

	Collects all the plugins from modules.
If modules is None, collects the plugins from the loaded modules.

All plugins are passed through the module filters, if any are any,
and returned as a list.

	
get_loaded_modules()[source]

	Returns all modules loaded by this instance.

	
get_module_plugin_filters(filter_function=None)[source]

	Gets the internal module filters. Returns a list object.

If supplied, the filter_function should take in a single
list argument and return back a list. filter_function is
designed to given the option for a custom filter on the module filters.

	
load_modules(filepaths)[source]

	Loads the modules from their filepaths. A filepath may be
a directory filepath if there is an __init__.py file in the
directory.

If a filepath errors, the exception will be caught and logged
in the logger.

Returns a list of modules.

	
remove_module_plugin_filters(module_plugin_filters)[source]

	Removes module_plugin_filters from the internal module filters.
If the filters are not found in the internal representation,
the function passes on silently.

module_plugin_filters may be a single object or an iterable.

	
set_module_plugin_filters(module_plugin_filters)[source]

	Sets the internal module filters to module_plugin_filters
module_plugin_filters may be a single object or an iterable.

Every module filters must be a callable and take in
a list of plugins and their associated names.

 Copyright 2015, Ben Hoff.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	pluginmanager 0.1.8 documentation

 	API Reference

PluginManager

	
class pluginmanager.PluginManager(unique_instances=True, instantiate_classes=True, plugins=None, blacklisted_plugins=None)[source]

	PluginManager manages the plugin state. It can automatically
instantiate classes and enforce uniqueness, which it does by default.

	
activate_plugins()[source]

	helper method that attempts to activate plugins
checks to see if plugin has method call before
calling it.

	
add_blacklisted_plugins(plugins)[source]

	add blacklisted plugins.
plugins may be a single object or iterable.

	
add_plugins(plugins)[source]

	Adds plugins to the internal state. plugins may be a single object
or an iterable.

If instantiate_classes is True and the plugins
have class instances in them, attempts to instatiate the classes.

If unique_instances is True and duplicate instances are passed in,
this method will not track the new instances internally.

	
deactivate_plugins()[source]

	helper method that attempts to deactivate plugins.
checks to see if plugin has method call before
calling it.

	
get_blacklisted_plugins()[source]

	gets blacklisted plugins tracked in the internal state
Returns a list object.

	
get_instances(filter_function=<class 'pluginmanager.iplugin.IPlugin'>)[source]

	Gets instances out of the internal state using
the default filter supplied in filter_function.
By default, it is the class IPlugin.

Can optionally pass in a list or tuple of classes
in for filter_function which will accomplish
the same goal.

lastly, a callable can be passed in, however
it is up to the user to determine if the
objects are instances or not.

	
get_plugins(filter_function=None)[source]

	Gets out the plugins from the internal state. Returns a list object.
If the optional filter_function is supplied, applies the filter
function to the arguments before returning them. Filters should
be callable and take a list argument of plugins.

	
register_classes(classes)[source]

	Register classes as plugins that are not subclassed from
IPlugin.
classes may be a single object or an iterable.

	
remove_blacklisted_plugins(plugins)[source]

	removes plugins from the blacklisted plugins.
plugins may be a single object or iterable.

	
remove_instance(instances)[source]

	removes instances from the internal state.

Note that this method is syntatic sugar for the
remove_plugins acts as a passthrough for that
function.
instances may be a single object or an iterable

	
remove_plugins(plugins)[source]

	removes plugins from the internal state

plugins may be a single object or an iterable.

	
set_blacklisted_plugins(plugins)[source]

	sets blacklisted plugins.
plugins may be a single object or iterable.

	
set_plugins(plugins)[source]

	sets plugins to the internal state. plugins may be a single object
or an iterable.

If instatntiate_classes is True and the plugins
have class instances in them, attempts to instatiate the classes.

If unique_instances is True and duplicate instances are passed in,
this method will not track the new instances internally.

 Copyright 2015, Ben Hoff.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	pluginmanager 0.1.8 documentation

Index

 A
 | C
 | D
 | F
 | G
 | L
 | M
 | P
 | R
 | S
 | T

A

 	

 	activate_plugins() (pluginmanager.PluginManager method)

 	add_blacklisted_directories() (pluginmanager.DirectoryManager method)

 	

 	(pluginmanager.PluginInterface method)

 	add_blacklisted_filepaths() (pluginmanager.FileManager method)

 	

 	(pluginmanager.PluginInterface method)

 	add_blacklisted_plugins() (pluginmanager.PluginInterface method)

 	

 	(pluginmanager.PluginManager method)

 	add_directories() (pluginmanager.DirectoryManager method)

 	add_file_filters() (pluginmanager.FileManager method)

 	

 	(pluginmanager.PluginInterface method)

 	

 	add_module_plugin_filters() (pluginmanager.ModuleManager method)

 	

 	(pluginmanager.PluginInterface method)

 	add_plugin_directories() (pluginmanager.PluginInterface method)

 	add_plugin_filepaths() (pluginmanager.FileManager method)

 	

 	(pluginmanager.PluginInterface method)

 	add_plugins() (pluginmanager.PluginInterface method)

 	

 	(pluginmanager.PluginManager method)

 	add_site_packages_paths() (pluginmanager.DirectoryManager method)

 	add_to_loaded_modules() (pluginmanager.ModuleManager method)

 	

 	(pluginmanager.PluginInterface method)

C

 	

 	collect_directories() (pluginmanager.DirectoryManager method)

 	collect_filepaths() (pluginmanager.FileManager method)

 	

 	collect_plugins() (pluginmanager.ModuleManager method)

D

 	

 	deactivate_plugins() (pluginmanager.PluginManager method)

 	

 	DirectoryManager (class in pluginmanager)

F

 	

 	FileManager (class in pluginmanager)

G

 	

 	get_blacklisted_directories() (pluginmanager.DirectoryManager method)

 	

 	(pluginmanager.PluginInterface method)

 	get_blacklisted_filepaths() (pluginmanager.FileManager method)

 	

 	(pluginmanager.PluginInterface method)

 	get_blacklisted_plugins() (pluginmanager.PluginInterface method)

 	

 	(pluginmanager.PluginManager method)

 	get_directories() (pluginmanager.DirectoryManager method)

 	get_file_filters() (pluginmanager.FileManager method)

 	

 	(pluginmanager.PluginInterface method)

 	get_instances() (pluginmanager.PluginInterface method)

 	

 	(pluginmanager.PluginManager method)

 	

 	get_loaded_modules() (pluginmanager.ModuleManager method)

 	

 	(pluginmanager.PluginInterface method)

 	get_module_plugin_filters() (pluginmanager.ModuleManager method)

 	

 	(pluginmanager.PluginInterface method)

 	get_plugin_directories() (pluginmanager.PluginInterface method)

 	get_plugin_filepaths() (pluginmanager.FileManager method)

 	

 	(pluginmanager.PluginInterface method)

 	get_plugins() (pluginmanager.PluginInterface method)

 	

 	(pluginmanager.PluginManager method)

L

 	

 	load_modules() (pluginmanager.ModuleManager method)

M

 	

 	ModuleManager (class in pluginmanager)

P

 	

 	PluginInterface (class in pluginmanager)

 	

 	PluginManager (class in pluginmanager)

R

 	

 	register_classes() (pluginmanager.PluginManager method)

 	remove_blacklisted_directories() (pluginmanager.DirectoryManager method)

 	

 	(pluginmanager.PluginInterface method)

 	remove_blacklisted_filepaths() (pluginmanager.FileManager method)

 	

 	(pluginmanager.PluginInterface method)

 	remove_blacklisted_plugins() (pluginmanager.PluginInterface method)

 	

 	(pluginmanager.PluginManager method)

 	remove_directories() (pluginmanager.DirectoryManager method)

 	remove_file_filters() (pluginmanager.FileManager method)

 	

 	(pluginmanager.PluginInterface method)

 	

 	remove_instance() (pluginmanager.PluginManager method)

 	remove_module_plugin_filters() (pluginmanager.ModuleManager method)

 	

 	(pluginmanager.PluginInterface method)

 	remove_plugin_directories() (pluginmanager.PluginInterface method)

 	remove_plugin_filepaths() (pluginmanager.FileManager method)

 	

 	(pluginmanager.PluginInterface method)

 	remove_plugins() (pluginmanager.PluginInterface method)

 	

 	(pluginmanager.PluginManager method)

S

 	

 	set_blacklisted_directories() (pluginmanager.DirectoryManager method)

 	

 	(pluginmanager.PluginInterface method)

 	set_blacklisted_filepaths() (pluginmanager.FileManager method)

 	

 	(pluginmanager.PluginInterface method)

 	set_blacklisted_plugins() (pluginmanager.PluginInterface method)

 	

 	(pluginmanager.PluginManager method)

 	set_directories() (pluginmanager.DirectoryManager method)

 	set_file_filters() (pluginmanager.FileManager method)

 	

 	(pluginmanager.PluginInterface method)

 	

 	set_module_plugin_filters() (pluginmanager.ModuleManager method)

 	

 	(pluginmanager.PluginInterface method)

 	set_plugin_directories() (pluginmanager.PluginInterface method)

 	set_plugin_filepaths() (pluginmanager.FileManager method)

 	

 	(pluginmanager.PluginInterface method)

 	set_plugins() (pluginmanager.PluginInterface method)

 	

 	(pluginmanager.PluginManager method)

T

 	

 	track_site_package_paths() (pluginmanager.PluginInterface method)

 Copyright 2015, Ben Hoff.
 Created using Sphinx 1.3.4.

 _static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		pluginmanager 0.1.8 documentation »

 All modules for which code is available

		pluginmanager.directory_manager

		pluginmanager.file_manager

		pluginmanager.module_manager

		pluginmanager.plugin_interface

		pluginmanager.plugin_manager

 © Copyright 2015, Ben Hoff.
 Created using Sphinx 1.3.4.

_static/comment.png

_modules/pluginmanager/file_manager.html

 Navigation

 		
 index

 		pluginmanager 0.1.8 documentation »

 		Module code »

 Source code for pluginmanager.file_manager

from pluginmanager import util

[docs]class FileManager(object):
 """
 `FileManager` manages the file filter state and is responible for
 collecting filepaths from a set of directories and filtering the files
 through the filters. Without file filters, this class acts as a
 passthrough, collecting and returning every file in a given directory.

 `FileManager` can also optionally manage the plugin filepath state through
 the use of the add/get/set plugin filepaths methods. Note that plugin
 interface is not automatically set up this way, although it is
 relatively trivial to do.
 """
 def __init__(self,
 file_filters=None,
 plugin_filepaths=None,
 blacklisted_filepaths=None):

 """
 `FileFilters` are callable filters. Each filter must take in a
 set of filepaths and return back a set of filepaths. Each filter
 is applied independently to the set of filepaths and added to the
 return set.
 `FileFilters` can be a single object or an iterable

 `plugin_filepaths` are known plugin filepaths that can be stored
 in `FileManager`. Note that filepaths stored in the plugin filepaths
 are NOT automatically added when calling the `collect_filepaths`
 method. Recommend using absolute paths. `plugin_filepaths` can be a
 single object or an interable.

 `blacklisted_filepaths` are plugin filepaths that are not to be
 included in the collected filepaths. Recommend using absolute paths.
 `blacklisted_filepaths` can be a single object or an iterable.
 """

 if file_filters is None:
 file_filters = []
 if plugin_filepaths is None:
 plugin_filepaths = set()
 if blacklisted_filepaths is None:
 blacklisted_filepaths = set()

 self.file_filters = util.return_list(file_filters)
 # pep8
 to_abs_paths = util.to_absolute_paths

 self.plugin_filepaths = to_abs_paths(plugin_filepaths)
 self.blacklisted_filepaths = to_abs_paths(blacklisted_filepaths)

[docs] def collect_filepaths(self, directories):
 """
 Collects and returns every filepath from each directory in
 `directories` that is filtered through the `file_filters`.
 If no `file_filters` are present, passes every file in directory
 as a result.
 Always returns a `set` object

 `directories` can be a object or an iterable. Recommend using
 absolute paths.
 """
 plugin_filepaths = set()
 directories = util.to_absolute_paths(directories)
 for directory in directories:
 filepaths = util.get_filepaths_from_dir(directory)
 filepaths = self._filter_filepaths(filepaths)
 plugin_filepaths.update(set(filepaths))

 plugin_filepaths = self._remove_blacklisted(plugin_filepaths)

 return plugin_filepaths

[docs] def add_plugin_filepaths(self, filepaths, except_blacklisted=True):
 """
 Adds `filepaths` to the `self.plugin_filepaths`. Recommend passing
 in absolute filepaths. Method will attempt to convert to
 absolute paths if they are not already.

 `filepaths` can be a single object or an iterable

 If `except_blacklisted` is `True`, all `filepaths` that
 have been blacklisted will not be added.
 """
 filepaths = util.to_absolute_paths(filepaths)
 if except_blacklisted:
 filepaths = util.remove_from_set(filepaths,
 self.blacklisted_filepaths)

 self.plugin_filepaths.update(filepaths)

[docs] def set_plugin_filepaths(self, filepaths, except_blacklisted=True):
 """
 Sets `filepaths` to the `self.plugin_filepaths`. Recommend passing
 in absolute filepaths. Method will attempt to convert to
 absolute paths if they are not already.

 `filepaths` can be a single object or an iterable.

 If `except_blacklisted` is `True`, all `filepaths` that
 have been blacklisted will not be set.
 """
 filepaths = util.to_absolute_paths(filepaths)
 if except_blacklisted:
 filepaths = util.remove_from_set(filepaths,
 self.blacklisted_filepaths)

 self.plugin_filepaths = filepaths

[docs] def remove_plugin_filepaths(self, filepaths):
 """
 Removes `filepaths` from `self.plugin_filepaths`.
 Recommend passing in absolute filepaths. Method will
 attempt to convert to absolute paths if not passed in.

 `filepaths` can be a single object or an iterable.
 """
 filepaths = util.to_absolute_paths(filepaths)
 self.plugin_filepaths = util.remove_from_set(self.plugin_filepaths,
 filepaths)

[docs] def get_plugin_filepaths(self):
 """
 returns the plugin filepaths tracked internally as a `set` object.
 """
 return self.plugin_filepaths

[docs] def set_file_filters(self, file_filters):
 """
 Sets internal file filters to `file_filters` by tossing old state.
 `file_filters` can be single object or iterable.
 """
 file_filters = util.return_list(file_filters)
 self.file_filters = file_filters

[docs] def add_file_filters(self, file_filters):
 """
 Adds `file_filters` to the internal file filters.
 `file_filters` can be single object or iterable.
 """
 file_filters = util.return_list(file_filters)
 self.file_filters.extend(file_filters)

[docs] def remove_file_filters(self, file_filters):
 """
 Removes the `file_filters` from the internal state.
 `file_filters` can be a single object or an iterable.
 """
 self.file_filters = util.remove_from_list(self.file_filters,
 file_filters)

[docs] def get_file_filters(self, filter_function=None):
 """
 Gets the file filters.
 `filter_function`, can be a user defined filter. Should be callable
 and return a list.
 """
 if filter_function is None:
 return self.file_filters
 else:
 return filter_function(self.file_filters)

[docs] def add_blacklisted_filepaths(self, filepaths, remove_from_stored=True):
 """
 Add `filepaths` to blacklisted filepaths.
 If `remove_from_stored` is `True`, any `filepaths` in
 `plugin_filepaths` will be automatically removed.

 Recommend passing in absolute filepaths but method will attempt
 to convert to absolute filepaths based on current working directory.
 """
 filepaths = util.to_absolute_paths(filepaths)
 self.blacklisted_filepaths.update(filepaths)
 if remove_from_stored:
 self.plugin_filepaths = util.remove_from_set(self.plugin_filepaths,
 filepaths)

[docs] def set_blacklisted_filepaths(self, filepaths, remove_from_stored=True):
 """
 Sets internal blacklisted filepaths to filepaths.
 If `remove_from_stored` is `True`, any `filepaths` in
 `self.plugin_filepaths` will be automatically removed.

 Recommend passing in absolute filepaths but method will attempt
 to convert to absolute filepaths based on current working directory.
 """
 filepaths = util.to_absolute_paths(filepaths)
 self.blacklisted_filepaths = filepaths
 if remove_from_stored:
 self.plugin_filepaths = util.remove_from_set(self.plugin_filepaths,
 filepaths)

[docs] def remove_blacklisted_filepaths(self, filepaths):
 """
 Removes `filepaths` from blacklisted filepaths

 Recommend passing in absolute filepaths but method will attempt
 to convert to absolute filepaths based on current working directory.
 """
 filepaths = util.to_absolute_paths(filepaths)
 black_paths = self.blacklisted_filepaths
 black_paths = util.remove_from_set(black_paths, filepaths)

[docs] def get_blacklisted_filepaths(self):
 """
 Returns the blacklisted filepaths as a set object.
 """
 return self.blacklisted_filepaths

 def _remove_blacklisted(self, filepaths):
 """
 internal helper method to remove the blacklisted filepaths
 from `filepaths`.
 """
 filepaths = util.remove_from_set(filepaths, self.blacklisted_filepaths)
 return filepaths

 def _filter_filepaths(self, filepaths):
 """
 helps iterate through all the file parsers
 each filter is applied individually to the
 same set of `filepaths`
 """
 if self.file_filters:
 plugin_filepaths = set()
 for file_filter in self.file_filters:
 plugin_paths = file_filter(filepaths)
 plugin_filepaths.update(plugin_paths)
 else:
 plugin_filepaths = filepaths

 return plugin_filepaths

 © Copyright 2015, Ben Hoff.
 Created using Sphinx 1.3.4.

_modules/pluginmanager/directory_manager.html

 Navigation

 		
 index

 		pluginmanager 0.1.8 documentation »

 		Module code »

 Source code for pluginmanager.directory_manager

import os
from .compat import getsitepackages

from pluginmanager import util

[docs]class DirectoryManager(object):
 """
 `DirectoryManager` manages the recursive search state and can
 optionally manage directory state. The default implementation of
 pluginmanager uses `DirectoryManager` to manage the directory state.

 `DirectoryManager` contains a directory blacklist, which can be used to
 stop from collecting from uninteresting directories.

 `DirectoryManager` manages directory state through the add/get/set
 directories methods.

 NOTE: When calling `collect_directories` the directories must be
 explicitly passed into the method call. This is to avoid tight coupling
 from the internal state and promote reuse at the Interface level.
 """
 def __init__(self,
 plugin_directories=None,
 recursive=True,
 blacklisted_directories=None):
 """
 `recursive` is used to control whether directories are searched
 recursviely or not

 `plugin_directories` may be a single directories or an iterable.

 `blacklisted_directories` may be a single directory or an iterable
 """

 self.recursive = recursive
 self.plugin_directories = None
 self.blacklisted_directories = None
 if plugin_directories is None:
 plugin_directories = set()
 if blacklisted_directories is None:
 blacklisted_directories = set()

 self.set_directories(plugin_directories)
 self.set_blacklisted_directories(blacklisted_directories)

[docs] def collect_directories(self, directories):
 """
 Collects all the directories into a `set` object.

 If `self.recursive` is set to `True` this method will iterate through
 and return all of the directories and the subdirectories found from
 `directories` that are not blacklisted.

 if `self.recursive` is set to `False` this will return all the
 directories that are not balcklisted.

 `directories` may be either a single object or an iterable. Recommend
 passing in absolute paths instead of relative. `collect_directories`
 will attempt to convert `directories` to absolute paths if they are not
 already.
 """
 directories = util.to_absolute_paths(directories)

 if not self.recursive:
 return self._remove_blacklisted(directories)

 recursive_dirs = set()
 for dir_ in directories:
 walk_iter = os.walk(dir_, followlinks=True)
 walk_iter = [w[0] for w in walk_iter]
 walk_iter = util.to_absolute_paths(walk_iter)
 walk_iter = self._remove_blacklisted(walk_iter)
 recursive_dirs.update(walk_iter)
 return recursive_dirs

[docs] def add_directories(self, directories, except_blacklisted=True):
 """
 Adds `directories` to the set of plugin directories.

 `directories` may be either a single object or a iterable.

 `directories` can be relative paths, but will be converted into
 absolute paths based on the current working directory.

 if `except_blacklisted` is `True` all `directories` in
 `self.blacklisted_directories` will be removed
 """
 directories = util.to_absolute_paths(directories)
 if except_blacklisted:
 directories = self._remove_blacklisted(directories)

 self.plugin_directories.update(directories)

[docs] def set_directories(self, directories, except_blacklisted=True):
 """
 Sets the plugin directories to `directories`. This will delete
 the previous state stored in `self.plugin_directories` in favor
 of the `directories` passed in.

 `directories` may be either a single object or an iterable.

 `directories` can contain relative paths but will be
 converted into absolute paths based on the current working
 directory.

 if `except_blacklisted` is `True` all `directories` in
 `self.blacklisted_directories` will be removed
 """
 directories = util.to_absolute_paths(directories)
 if except_blacklisted:
 directories = self._remove_blacklisted(directories)

 self.plugin_directories = directories

[docs] def remove_directories(self, directories):
 """
 Removes any `directories` from the set of plugin directories.

 `directories` may be a single object or an iterable.

 Recommend passing in all paths as absolute, but the method will
 attemmpt to convert all paths to absolute if they are not already
 based on the current working directory.
 """
 directories = util.to_absolute_paths(directories)
 self.plugin_directories = util.remove_from_set(self.plugin_directories,
 directories)

[docs] def add_site_packages_paths(self):
 """
 A helper method to add all of the site packages tracked by python
 to the set of plugin directories.

 NOTE that if using a virtualenv, there is an outstanding bug with the
 method used here. While there is a workaround implemented, when using a
 virutalenv this method WILL NOT track every single path tracked by
 python. See: https://github.com/pypa/virtualenv/issues/355
 """
 site_packages = getsitepackages()
 self.add_directories(site_packages)

[docs] def add_blacklisted_directories(self,
 directories,
 remove_from_stored_directories=True):

 """
 Adds `directories` to be blacklisted. Blacklisted directories will not
 be returned or searched recursively when calling the
 `collect_directories` method.

 `directories` may be a single instance or an iterable. Recommend
 passing in absolute paths, but method will try to convert to absolute
 paths based on the current working directory.

 If `remove_from_stored_directories` is true, all `directories`
 will be removed from `self.plugin_directories`
 """
 absolute_paths = util.to_absolute_paths(directories)
 self.blacklisted_directories.update(absolute_paths)
 if remove_from_stored_directories:
 plug_dirs = self.plugin_directories
 plug_dirs = util.remove_from_set(plug_dirs,
 directories)

[docs] def set_blacklisted_directories(self,
 directories,
 remove_from_stored_directories=True):
 """
 Sets the `directories` to be blacklisted. Blacklisted directories will
 not be returned or searched recursively when calling
 `collect_directories`.

 This will replace the previously stored set of blacklisted
 paths.

 `directories` may be a single instance or an iterable. Recommend
 passing in absolute paths. Method will try to convert to absolute path
 based on current working directory.
 """
 absolute_paths = util.to_absolute_paths(directories)
 self.blacklisted_directories = absolute_paths
 if remove_from_stored_directories:
 plug_dirs = self.plugin_directories
 plug_dirs = util.remove_from_set(plug_dirs,
 directories)

[docs] def get_blacklisted_directories(self):
 """
 Returns the set of the blacklisted directories.
 """
 return self.blacklisted_directories

[docs] def remove_blacklisted_directories(self, directories):
 """
 Attempts to remove the `directories` from the set of blacklisted
 directories. If a particular directory is not found in the set of
 blacklisted, method will continue on silently.

 `directories` may be a single instance or an iterable. Recommend
 passing in absolute paths. Method will try to convert to an absolute
 path if it is not already using the current working directory.
 """
 directories = util.to_absolute_paths(directories)
 black_dirs = self.blacklisted_directories
 black_dirs = util.remove_from_set(black_dirs, directories)

 def _remove_blacklisted(self, directories):
 """
 Attempts to remove the blacklisted directories from `directories`
 and then returns whatever is left in the set.

 Called from the `collect_directories` method.
 """
 directories = util.to_absolute_paths(directories)
 directories = util.remove_from_set(directories,
 self.blacklisted_directories)

 return directories

[docs] def get_directories(self):
 """
 Returns the plugin directories in a `set` object
 """
 return self.plugin_directories

 © Copyright 2015, Ben Hoff.
 Created using Sphinx 1.3.4.

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		pluginmanager 0.1.8 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Ben Hoff.
 Created using Sphinx 1.3.4.

_modules/pluginmanager/plugin_manager.html

 Navigation

 		
 index

 		pluginmanager 0.1.8 documentation »

 		Module code »

 Source code for pluginmanager.plugin_manager

import inspect
from . import util
from .iplugin import IPlugin

[docs]class PluginManager(object):
 """
 PluginManager manages the plugin state. It can automatically
 instantiate classes and enforce uniqueness, which it does by default.
 """
 def __init__(self,
 unique_instances=True,
 instantiate_classes=True,
 plugins=None,
 blacklisted_plugins=None):
 """
 `unique_instances` determines if all plugins have to be unique.
 This will also ensure that no two instances of the same class are
 tracked internally.

 `instantiate_classes` tracks to see if the class should automatically
 instantiate class objects that are passed in.
 `plugins` can be a single obj or iterable
 `blacklisted plugins` can be a single obj or iterable
 """
 self.unique_instances = unique_instances
 self.instantiate_classes = instantiate_classes

 if plugins is None:
 plugins = []
 if blacklisted_plugins is None:
 blacklisted_plugins = []

 self.plugins = util.return_list(plugins)
 self.blacklisted_plugins = util.return_list(blacklisted_plugins)

[docs] def get_plugins(self, filter_function=None):
 """
 Gets out the plugins from the internal state. Returns a list object.
 If the optional filter_function is supplied, applies the filter
 function to the arguments before returning them. Filters should
 be callable and take a list argument of plugins.
 """
 plugins = self.plugins
 if filter_function is not None:
 plugins = filter_function(plugins)
 return plugins

[docs] def add_plugins(self, plugins):
 """
 Adds plugins to the internal state. `plugins` may be a single object
 or an iterable.

 If `instantiate_classes` is True and the plugins
 have class instances in them, attempts to instatiate the classes.

 If `unique_instances` is True and duplicate instances are passed in,
 this method will not track the new instances internally.
 """
 self._instance_parser(plugins)

[docs] def set_plugins(self, plugins):
 """
 sets plugins to the internal state. `plugins` may be a single object
 or an iterable.

 If `instatntiate_classes` is True and the plugins
 have class instances in them, attempts to instatiate the classes.

 If `unique_instances` is True and duplicate instances are passed in,
 this method will not track the new instances internally.
 """
 self.plugins = []
 self._instance_parser(plugins)

[docs] def remove_plugins(self, plugins):
 """
 removes `plugins` from the internal state

 `plugins` may be a single object or an iterable.
 """
 util.remove_from_list(self.plugins, plugins)

[docs] def remove_instance(self, instances):
 """
 removes `instances` from the internal state.

 Note that this method is syntatic sugar for the
 `remove_plugins` acts as a passthrough for that
 function.
 `instances` may be a single object or an iterable
 """
 self.remove_plugins(instances)

 def _get_instance(self, klasses):
 """
 internal method that gets every instance of the klasses
 out of the internal plugin state.
 """
 return [x for x in self.plugins if isinstance(x, klasses)]

[docs] def get_instances(self, filter_function=IPlugin):
 """
 Gets instances out of the internal state using
 the default filter supplied in filter_function.
 By default, it is the class IPlugin.

 Can optionally pass in a list or tuple of classes
 in for `filter_function` which will accomplish
 the same goal.

 lastly, a callable can be passed in, however
 it is up to the user to determine if the
 objects are instances or not.
 """
 if isinstance(filter_function, (list, tuple)):
 return self._get_instance(filter_function)
 elif inspect.isclass(filter_function):
 return self._get_instance(filter_function)
 elif filter_function is None:
 return self.plugins
 else:
 return filter_function(self.plugins)

[docs] def register_classes(self, classes):
 """
 Register classes as plugins that are not subclassed from
 IPlugin.
 `classes` may be a single object or an iterable.
 """
 classes = util.return_list(classes)
 for klass in classes:
 IPlugin.register(klass)

 def _instance_parser(self, plugins):
 """
 internal method to parse instances of plugins.

 Determines if each class is a class instance or
 object instance and calls the appropiate handler
 method.
 """
 plugins = util.return_list(plugins)
 for instance in plugins:
 if inspect.isclass(instance):
 self._handle_class_instance(instance)
 else:
 self._handle_object_instance(instance)

 def _handle_class_instance(self, klass):
 """
 handles class instances. If a class is blacklisted, returns.
 If uniuqe_instances is True and the class is unique, instantiates
 the class and adds the new object to plugins.

 If not unique_instances, creates and adds new instance to plugin
 state
 """
 if (klass in self.blacklisted_plugins or not
 self.instantiate_classes or
 klass == IPlugin):
 return
 elif self.unique_instances and self._unique_class(klass):
 self.plugins.append(klass())
 elif not self.unique_instances:
 self.plugins.append(klass())

 def _handle_object_instance(self, instance):
 klass = type(instance)

 if klass in self.blacklisted_plugins:
 return
 elif self.unique_instances:
 if self._unique_class(klass):
 self.plugins.append(instance)
 else:
 return
 else:
 self.plugins.append(instance)

[docs] def activate_plugins(self):
 """
 helper method that attempts to activate plugins
 checks to see if plugin has method call before
 calling it.
 """
 for instance in self.get_instances():
 if hasattr(instance, 'activate'):
 instance.activate()

[docs] def deactivate_plugins(self):
 """
 helper method that attempts to deactivate plugins.
 checks to see if plugin has method call before
 calling it.
 """
 for instance in self.get_instances():
 if hasattr(instance, 'deactivate'):
 instance.deactivate()

 def _unique_class(self, cls):
 """
 internal method to check if any of the plugins are instances
 of a given cls
 """
 return not any(isinstance(obj, cls) for obj in self.plugins)

[docs] def add_blacklisted_plugins(self, plugins):
 """
 add blacklisted plugins.
 `plugins` may be a single object or iterable.
 """
 plugins = util.return_list(plugins)
 self.blacklisted_plugins.extend(plugins)

[docs] def set_blacklisted_plugins(self, plugins):
 """
 sets blacklisted plugins.
 `plugins` may be a single object or iterable.
 """
 plugins = util.return_list(plugins)
 self.blacklisted_plugins = plugins

[docs] def get_blacklisted_plugins(self):
 """
 gets blacklisted plugins tracked in the internal state
 Returns a list object.
 """
 return self.blacklisted_plugins

[docs] def remove_blacklisted_plugins(self, plugins):
 """
 removes `plugins` from the blacklisted plugins.
 `plugins` may be a single object or iterable.
 """
 util.remove_from_list(self.blacklisted_plugins, plugins)

 © Copyright 2015, Ben Hoff.
 Created using Sphinx 1.3.4.

_static/comment-close.png

_modules/pluginmanager/module_manager.html

 Navigation

 		
 index

 		pluginmanager 0.1.8 documentation »

 		Module code »

 Source code for pluginmanager.module_manager

import os
import sys
import logging
import inspect
from .compat import load_source

from pluginmanager import util

logging.basicConfig()

[docs]class ModuleManager(object):
 """
 `ModuleManager` manages the module plugin filter state and is responsible
 for both loading the modules from source code and collecting the plugins
 from each of the modules.

 `ModuleManager` can also optionally manage modules explicitly through
 the use of the add/get/set loaded modules methods. The default
 implementation is hardwired to use the tracked loaded modules if no
 modules are passed into the `collect_plugins` method.
 """
 def __init__(self, module_plugin_filters=None):
 """
 `module_plugin_filters` are callable filters. Each filter must take
 in a list of plugins and a list of plugin names in the form of:

 ::

 def my_module_plugin_filter(plugins: list, plugin_names: list):
 pass

 `module_plugin_filters` should return a list of the plugins and may
 be either a single object or an iterable.
 """
 if module_plugin_filters is None:
 module_plugin_filters = []
 module_plugin_filters = util.return_list(module_plugin_filters)
 self.loaded_modules = set()
 self.processed_filepaths = dict()
 self.module_plugin_filters = module_plugin_filters
 self._log = logging.getLogger(__name__)
 self._error_string = 'pluginmanager unable to import {}\n'

[docs] def load_modules(self, filepaths):
 """
 Loads the modules from their `filepaths`. A filepath may be
 a directory filepath if there is an `__init__.py` file in the
 directory.

 If a filepath errors, the exception will be caught and logged
 in the logger.

 Returns a list of modules.
 """
 # removes filepaths from processed if they are not in sys.modules
 self._update_loaded_modules()
 filepaths = util.return_set(filepaths)

 modules = []
 for filepath in filepaths:
 filepath = self._clean_filepath(filepath)
 # check to see if already processed and move onto next if so
 if self._processed_filepath(filepath):
 continue

 module_name = util.get_module_name(filepath)
 plugin_module_name = util.create_unique_module_name(module_name)

 try:
 module = load_source(plugin_module_name, filepath)
 # Catch all exceptions b/c loader will return errors
 # within the code itself, such as Syntax, NameErrors, etc.
 except Exception:
 exc_info = sys.exc_info()
 self._log.error(msg=self._error_string.format(filepath),
 exc_info=exc_info)
 continue

 self.loaded_modules.add(module.__name__)
 modules.append(module)
 self.processed_filepaths[module.__name__] = filepath

 return modules

[docs] def collect_plugins(self, modules=None):
 """
 Collects all the plugins from `modules`.
 If modules is None, collects the plugins from the loaded modules.

 All plugins are passed through the module filters, if any are any,
 and returned as a list.
 """
 if modules is None:
 modules = self.get_loaded_modules()
 else:
 modules = util.return_list(modules)

 plugins = []
 for module in modules:
 module_plugins = [(item[1], item[0])
 for item
 in inspect.getmembers(module)
 if item[1] and item[0] != '__builtins__']
 module_plugins, names = zip(*module_plugins)

 module_plugins = self._filter_modules(module_plugins, names)
 plugins.extend(module_plugins)
 return plugins

[docs] def set_module_plugin_filters(self, module_plugin_filters):
 """
 Sets the internal module filters to `module_plugin_filters`
 `module_plugin_filters` may be a single object or an iterable.

 Every module filters must be a callable and take in
 a list of plugins and their associated names.
 """
 module_plugin_filters = util.return_list(module_plugin_filters)
 self.module_plugin_filters = module_plugin_filters

[docs] def add_module_plugin_filters(self, module_plugin_filters):
 """
 Adds `module_plugin_filters` to the internal module filters.
 May be a single object or an iterable.

 Every module filters must be a callable and take in
 a list of plugins and their associated names.
 """
 module_plugin_filters = util.return_list(module_plugin_filters)
 self.module_plugin_filters.extend(module_plugin_filters)

[docs] def get_module_plugin_filters(self, filter_function=None):
 """
 Gets the internal module filters. Returns a list object.

 If supplied, the `filter_function` should take in a single
 list argument and return back a list. `filter_function` is
 designed to given the option for a custom filter on the module filters.
 """
 if filter_function is None:
 return self.module_plugin_filters
 else:
 return filter_function(self.module_plugin_filters)

[docs] def remove_module_plugin_filters(self, module_plugin_filters):
 """
 Removes `module_plugin_filters` from the internal module filters.
 If the filters are not found in the internal representation,
 the function passes on silently.

 `module_plugin_filters` may be a single object or an iterable.
 """
 util.remove_from_list(self.module_plugin_filters,
 module_plugin_filters)

 def _get_modules(self, names):
 """
 An internal method that gets the `names` from sys.modules and returns
 them as a list
 """
 loaded_modules = []
 for name in names:
 loaded_modules.append(sys.modules[name])
 return loaded_modules

[docs] def add_to_loaded_modules(self, modules):
 """
 Manually add in `modules` to be tracked by the module manager.

 `modules` may be a single object or an iterable.
 """
 modules = util.return_set(modules)
 for module in modules:
 if not isinstance(module, str):
 module = module.__name__
 self.loaded_modules.add(module)

[docs] def get_loaded_modules(self):
 """
 Returns all modules loaded by this instance.
 """
 return self._get_modules(self.loaded_modules)

 def _filter_modules(self, plugins, names):
 """
 Internal helper method to parse all of the plugins and names
 through each of the module filters
 """
 if self.module_plugin_filters:
 # check to make sure the number of plugins isn't changing
 original_length_plugins = len(plugins)
 module_plugins = set()
 for module_filter in self.module_plugin_filters:
 module_plugins.update(module_filter(plugins, names))
 if len(plugins) < original_length_plugins:
 warning = """Module Filter removing plugins from original
 data member! Suggest creating a new list in each module
 filter and returning new list instead of modifying the
 original data member so subsequent module filters can have
 access to all the possible plugins.\n {}"""

 self._log.info(warning.format(module_filter))

 plugins = module_plugins
 return plugins

 def _clean_filepath(self, filepath):
 """
 processes the filepath by checking if it is a directory or not
 and adding `.py` if not present.
 """
 if (os.path.isdir(filepath) and
 os.path.isfile(os.path.join(filepath, '__init__.py'))):

 filepath = os.path.join(filepath, '__init__.py')

 if (not filepath.endswith('.py') and
 os.path.isfile(filepath + '.py')):
 filepath += '.py'
 return filepath

 def _processed_filepath(self, filepath):
 """
 checks to see if the filepath has already been processed
 """
 processed = False
 if filepath in self.processed_filepaths.values():
 processed = True

 return processed

 def _update_loaded_modules(self):
 """
 Updates the loaded modules by checking if they are still in sys.modules
 """
 system_modules = sys.modules.keys()
 for module in list(self.loaded_modules):
 if module not in system_modules:
 self.processed_filepaths.pop(module)
 self.loaded_modules.remove(module)

 © Copyright 2015, Ben Hoff.
 Created using Sphinx 1.3.4.

_modules/pluginmanager/plugin_interface.html

 Navigation

 		
 index

 		pluginmanager 0.1.8 documentation »

 		Module code »

 Source code for pluginmanager.plugin_interface

from .directory_manager import DirectoryManager
from .file_manager import FileManager
from .module_manager import ModuleManager
from .plugin_manager import PluginManager
from .iplugin import IPlugin

[docs]class PluginInterface(object):
 def __init__(self, **kwargs):

 self.directory_manager = kwargs.get('directory_manager',
 DirectoryManager())

 self.file_manager = kwargs.get('file_manager', FileManager())
 self.module_manager = kwargs.get('module_manager', ModuleManager())
 self.plugin_manager = kwargs.get('plugin_manager', PluginManager())

[docs] def track_site_package_paths(self):
 """
 A helper method to add all of the site packages tracked by python
 to the set of plugin directories.

 NOTE that if using a virtualenv, there is an outstanding bug with the
 method used here. While there is a workaround implemented, when using a
 virutalenv this method WILL NOT track every single path tracked by
 python. See: https://github.com/pypa/virtualenv/issues/355
 """
 return self.directory_manager.add_site_packages_paths()

 def collect_plugin_directories(self, directories=None):
 if directories is None:
 directories = self.get_plugin_directories()
 # alias for pep8 reasons
 dir_manage = self.directory_manager
 plugin_directories = dir_manage.collect_directories(directories)
 return plugin_directories

 def collect_plugin_filepaths(self, directories=None):
 if directories is None:
 directories = self.collect_plugin_directories()
 plugin_filepaths = self.file_manager.collect_filepaths(directories)
 return plugin_filepaths

 def load_modules(self, filepaths=None):
 if filepaths is None:
 filepaths = self.collect_plugin_filepaths()
 loaded_modules = self.module_manager.load_modules(filepaths)
 return loaded_modules

 def collect_plugins(self,
 modules=None,
 store_collected_plugins=True):

 if modules is None:
 modules = self.load_modules()
 plugins = self.module_manager.collect_plugins(modules)
 if store_collected_plugins:
 self.add_plugins(plugins)
 return plugins

[docs] def set_plugins(self, plugins):
 """
 sets plugins to the internal state.
 If the instance member `instantiate_classes` in the underlying
 member `plugin_manager` is True and the plugins
 have class instances in them, attempts to instatiate the classes.
 The default is `True`

 This can be checked/changed by:

 `plugin_interface.plugin_manager.instantiate_classes`

 If the instance member `unique_instances` in the underlying member
 `plugin_manager` is True and duplicate instances are passed in,
 this method will not track the new instances internally.
 The default is `True`

 This can be checked/changed by:

 `plugin_interface.plugin_manager.unique_instances`

 """
 self.plugin_manager.set_plugins(plugins)

[docs] def add_plugins(self, plugins):
 """
 Adds plugins to the internal state. `plugins` may be a single
 object or an iterable.

 If the instance member `instantiate_classes` in the underlying
 member `plugin_manager` is True and the plugins
 have class instances in them, attempts to instatiate the classes.
 Default is `True`

 This can be checked/changed by:

 `plugin_interface.plugin_manager.instantiate_classes`

 If the instance member `unique_instances` in the underlying member
 `plugin_manager` is True and duplicate instances are passed in,
 this method will not track the new instances internally.
 Default is `True`

 This can be checked/changed by:

 `plugin_interface.plugin_manager.unique_instances`

 """
 self.plugin_manager.add_plugins(plugins)

[docs] def remove_plugins(self, plugins):
 """
 removes `plugins` from the internal state

 `plugins` may be a single object or an iterable.
 """
 self.plugin_manager.remove_plugins(plugins)

[docs] def get_plugins(self, filter_function=None):
 """
 Gets out the plugins from the internal state. Returns a list
 object.

 If the optional filter_function is supplied, applies the filter
 function to the arguments before returning them. Filters should
 be callable and take a list argument of plugins.
 """
 return self.plugin_manager.get_plugins(filter_function)

[docs] def add_plugin_directories(self, paths, except_blacklisted=True):
 """
 Adds `directories` to the set of plugin directories.

 `directories` may be either a single object or a iterable.

 `directories` can be relative paths, but will be converted into
 absolute paths based on the current working directory.

 if `except_blacklisted` is `True` all `directories` in
 that are blacklisted will be removed
 """
 self.directory_manager.add_directories(paths, except_blacklisted)

[docs] def get_plugin_directories(self):
 """
 Returns the plugin directories in a `set` object
 """
 return self.directory_manager.get_directories()

[docs] def remove_plugin_directories(self, paths):
 """
 Removes any `directories` from the set of plugin directories.

 `directories` may be a single object or an iterable.

 Recommend passing in all paths as absolute, but the method will
 attemmpt to convert all paths to absolute if they are not already
 based on the current working directory.
 """
 self.directory_manager.remove_directories(paths)

[docs] def set_plugin_directories(self, paths, except_blacklisted=True):
 """
 Sets the plugin directories to `directories`. This will delete
 the previous state stored in `self.plugin_directories` in favor
 of the `directories` passed in.

 `directories` may be either a single object or an iterable.

 `directories` can contain relative paths but will be
 converted into absolute paths based on the current working
 directory.

 if `except_blacklisted` is `True` all `directories` in
 blacklisted that are blacklisted will be removed
 """
 self.directory_manager.set_directories(paths, except_blacklisted)

[docs] def add_plugin_filepaths(self, filepaths, except_blacklisted=True):
 """
 Adds `filepaths` to internal state. Recommend passing
 in absolute filepaths. Method will attempt to convert to
 absolute paths if they are not already.

 `filepaths` can be a single object or an iterable

 If `except_blacklisted` is `True`, all `filepaths` that
 have been blacklisted will not be added.
 """
 self.file_manager.add_plugin_filepaths(filepaths,
 except_blacklisted)

[docs] def get_plugin_filepaths(self):
 """
 returns the plugin filepaths tracked internally as a `set` object.
 """
 return self.file_manager.get_plugin_filepaths()

[docs] def remove_plugin_filepaths(self, filepaths):
 """
 Removes `filepaths` from internal state.
 Recommend passing in absolute filepaths. Method will
 attempt to convert to absolute paths if not passed in.

 `filepaths` can be a single object or an iterable.
 """
 self.file_manager.remove_plugin_filepaths(filepaths)

[docs] def set_plugin_filepaths(self, filepaths, except_blacklisted=True):
 """
 Sets internal state to `filepaths`. Recommend passing
 in absolute filepaths. Method will attempt to convert to
 absolute paths if they are not already.

 `filepaths` can be a single object or an iterable.

 If `except_blacklisted` is `True`, all `filepaths` that
 have been blacklisted will not be set.
 """
 self.file_manager.set_plugin_filepaths(filepaths,
 except_blacklisted)

[docs] def add_to_loaded_modules(self, modules):
 """
 Manually add in `modules` to be tracked by the module manager.

 `modules` may be a single object or an iterable.
 """
 self.module_manager.add_to_loaded_modules(modules)

[docs] def get_loaded_modules(self):
 """
 Returns all modules loaded by this instance.
 """
 return self.module_manager.get_loaded_modules()

[docs] def get_instances(self, filter_function=IPlugin):
 """
 Gets instances out of the internal state using
 the default filter supplied in filter_function.
 By default, it is the class IPlugin.

 Can optionally pass in a list or tuple of classes
 in for `filter_function` which will accomplish
 the same goal.

 lastly, a callable can be passed in, however
 it is up to the user to determine if the
 objects are instances or not.
 """
 return self.plugin_manager.get_instances(filter_function)

[docs] def add_file_filters(self, file_filters):
 """
 Adds `file_filters` to the internal file filters.
 `file_filters` can be single object or iterable.
 """
 self.file_manager.add_file_filters(file_filters)

[docs] def get_file_filters(self, filter_function=None):
 """
 Gets the file filters.
 `filter_function`, can be a user defined filter. Should be callable
 and return a list.
 """
 return self.file_manager.get_file_filters(filter_function)

[docs] def remove_file_filters(self, file_filters):
 """
 Removes the `file_filters` from the internal state.
 `file_filters` can be a single object or an iterable.
 """
 self.file_manager.remove_file_filters(file_filters)

[docs] def set_file_filters(self, file_filters):
 """
 Sets internal file filters to `file_filters` by tossing old state.
 `file_filters` can be single object or iterable.
 """
 self.file_manager.set_file_filters(file_filters)

[docs] def add_module_plugin_filters(self, module_plugin_filters):
 """
 Adds `module_plugin_filters` to the internal module filters.
 May be a single object or an iterable.

 Every module filters must be a callable and take in
 a list of plugins and their associated names.
 """
 self.module_manager.add_module_plugin_filters(module_plugin_filters)

[docs] def get_module_plugin_filters(self, filter_function=None):
 """
 Gets the internal module filters. Returns a list object.

 If supplied, the `filter_function` should take in a single
 list argument and return back a list. `filter_function` is
 designed to given the option for a custom filter on the module filters.
 """
 return self.module_manager.get_module_plugin_filters(filter_function)

[docs] def remove_module_plugin_filters(self, module_plugin_filters):
 """
 Removes `module_plugin_filters` from the internal module filters.
 If the filters are not found in the internal representation,
 the function passes on silently.

 `module_plugin_filters` may be a single object or an iterable.
 """
 self.module_manager.remove_module_plugin_filters(module_plugin_filters)

[docs] def set_module_plugin_filters(self, module_plugin_filters):
 """
 Sets the internal module filters to `module_plugin_filters`
 `module_plugin_filters` may be a single object or an iterable.

 Every module filters must be a callable and take in
 a list of plugins and their associated names.
 """
 self.module_manager.set_module_plugin_filters(module_plugin_filters)

[docs] def add_blacklisted_directories(self,
 directories,
 rm_black_dirs_from_stored_dirs=True):
 """
 Adds `directories` to be blacklisted. Blacklisted directories will not
 be returned or searched recursively when calling the
 `collect_directories` method.

 `directories` may be a single instance or an iterable. Recommend
 passing in absolute paths, but method will try to convert to absolute
 paths based on the current working directory.

 If `remove_from_stored_directories` is true, all `directories`
 will be removed from internal state.
 """
 add_black_dirs = self.directory_manager.add_blacklisted_directories
 add_black_dirs(directories, rm_black_dirs_from_stored_dirs)

[docs] def get_blacklisted_directories(self):
 """
 Returns the set of the blacklisted directories.
 """
 return self.directory_manager.get_blacklisted_directories()

[docs] def set_blacklisted_directories(self,
 directories,
 rm_black_dirs_from_stored_dirs=True):
 """
 Sets the `directories` to be blacklisted. Blacklisted directories will
 not be returned or searched recursively when calling
 `collect_directories`.

 This will replace the previously stored set of blacklisted
 paths.

 `directories` may be a single instance or an iterable. Recommend
 passing in absolute paths. Method will try to convert to absolute path
 based on current working directory.
 """
 set_black_dirs = self.directory_manager.set_blacklisted_directories
 set_black_dirs(directories, rm_black_dirs_from_stored_dirs)

[docs] def remove_blacklisted_directories(self, directories):
 """
 Attempts to remove the `directories` from the set of blacklisted
 directories. If a particular directory is not found in the set of
 blacklisted, method will continue on silently.

 `directories` may be a single instance or an iterable. Recommend
 passing in absolute paths. Method will try to convert to an absolute
 path if it is not already using the current working directory.
 """
 self.directory_manager.remove_blacklisted_directories(directories)

[docs] def add_blacklisted_filepaths(self, filepaths, remove_from_stored=True):
 """
 Add `filepaths` to blacklisted filepaths.
 If `remove_from_stored` is `True`, any `filepaths` in
 internal state will be automatically removed.
 """
 self.file_manager.add_blacklisted_filepaths(filepaths,
 remove_from_stored)

[docs] def get_blacklisted_filepaths(self):
 """
 Returns the blacklisted filepaths as a set object.
 """
 return self.file_manager.get_blacklisted_filepaths()

[docs] def set_blacklisted_filepaths(self, filepaths, remove_from_stored=True):
 """
 Sets internal blacklisted filepaths to filepaths.
 If `remove_from_stored` is `True`, any `filepaths` in
 internal state will be automatically removed.
 """
 self.file_manager.set_blacklisted_filepaths(filepaths)

[docs] def remove_blacklisted_filepaths(self, filepaths):
 """
 Removes `filepaths` from blacklisted filepaths.
 `filepaths` may be a single filepath or iterable of filepaths.
 recommend passing in absolute filepaths but method will attempt
 to convert to absolute filepaths based on current working directory.
 """
 self.file_manager.remove_blacklisted_filepaths(filepaths)

[docs] def add_blacklisted_plugins(self, plugins):
 """
 add blacklisted plugins.
 `plugins` may be a single object or iterable.
 """
 self.plugin_manager.add_blacklisted_plugins(plugins)

[docs] def get_blacklisted_plugins(self):
 """
 gets blacklisted plugins tracked in the internal state
 Returns a list object.
 """
 return self.plugin_manager.get_blacklisted_plugins()

[docs] def set_blacklisted_plugins(self, plugins):
 """
 sets blacklisted plugins.
 `plugins` may be a single object or iterable.
 """
 self.plugin_manager.set_blacklisted_plugins(plugins)

[docs] def remove_blacklisted_plugins(self, plugins):
 """
 removes `plugins` from the blacklisted plugins.
 `plugins` may be a single object or iterable.
 """
 self.plugin_manager.remove_blacklisted_plugins(plugins)

 © Copyright 2015, Ben Hoff.
 Created using Sphinx 1.3.4.

