
pluginmanager Documentation
Release 0.1.8

Ben Hoff

January 25, 2016

Contents

1 Installation 3

2 Quickstart 5

3 Custom Plugins 7

4 Add Plugins Manually 9

5 Filter Instances 11
5.1 API Reference . 12

6 Indices and tables 21

i

ii

pluginmanager Documentation, Release 0.1.8

python plugin management, simplified.

Source Code

Library under development. Contains rough edges/unfinished functionality. API subject to changes.

Contents 1

https://github.com/benhoff/pluginmanager

pluginmanager Documentation, Release 0.1.8

2 Contents

CHAPTER 1

Installation

pip install pluginmanager

-or-

pip install git+https://github.com/benhoff/pluginmanager.git

3

pluginmanager Documentation, Release 0.1.8

4 Chapter 1. Installation

CHAPTER 2

Quickstart

from pluginmanager import PluginInterface

plugin_interface = PluginInterface()
plugin_interface.set_plugin_directories(plugin_directory_path)
plugin_interface.collect_plugins() # doctest: +SKIP

plugins = plugin_interface.get_instances()
print(plugins) # doctest: +SKIP +HIDE

5

pluginmanager Documentation, Release 0.1.8

6 Chapter 2. Quickstart

CHAPTER 3

Custom Plugins

The quickstart will only work if you subclass IPlugin for your custom plugins.

import pluginmanager

class MyCustomPlugin(pluginmanager.IPlugin):
def __init__(self):

self.name = 'custom_name'
super().__init__()

Or register your class as subclass of IPlugin.

import pluginmanager

pluginmanager.IPlugin.register(YourClassHere)

7

pluginmanager Documentation, Release 0.1.8

8 Chapter 3. Custom Plugins

CHAPTER 4

Add Plugins Manually

Add classes.

import pluginmanager

class CustomClass(pluginmanager.IPlugin):
pass

plugin_interface = pluginmanager.PluginInterface()
plugin_interface.add_plugins(CustomClass)

plugins = plugin_interface.get_instances()
print(plugins) # doctest: +SKIP

Alternatively, add instances.

import pluginmanager

class CustomClass(pluginmanager.IPlugin):
pass

custom_class_instance = CustomClass()

plugin_interface = pluginmanager.PluginInterface()
plugin_interface.add_plugins(custom_class_instance)

plugins = plugin_interface.get_instances()
print(plugins) # doctest: +SKIP

pluginmanager is defaulted to automatically instantiate unique instances. Disable automatic instantiation.

import pluginmanager

plugin_interface = pluginmanager.PluginInterface()
plugin_manager = plugin_interface.plugin_manager

plugin_manager.instantiate_classes = False

Disable uniqueness (Only one instance of class per pluginmanager)

import pluginmanager

plugin_interface = pluginmanager.PluginInterface()
plugin_manager = plugin_interface.plugin_manager

9

pluginmanager Documentation, Release 0.1.8

plugin_manager.unique_instances = False

10 Chapter 4. Add Plugins Manually

CHAPTER 5

Filter Instances

Pass in a class to get back just the instances of a class

import pluginmanager

class MyPluginClass(pluginmanager.IPlugin):
pass

plugin_interface = pluginmanager.PluginInterface()
plugin_interface.add_plugins(MyPluginClass)

all_instances_of_class = plugin_interface.get_instances(MyPluginClass)
print(all_instances_of_class) # doctest: +SKIP

Alternatively, create and pass in your own custom filters. Either make a class based filter

create a custom plugin class
class Plugin(pluginmanager.IPlugin):

def __init__(self, name):
self.name = name

create a custom filter
class NameFilter(object):

def __init__(self, name):
self.stored_name = name

def __call__(self, plugins):
result = []
for plugin in plugins:

if plugin.name == self.stored_name:
result.append(plugin)

return result

create an instance of our custom filter
mypluginclass_name_filter = NameFilter('good plugin')

plugin_interface = pluginmanager.PluginInterface()
plugin_interface.add_plugins([Plugin('good plugin'),

Plugin('bad plugin')])

filtered_plugins = plugin_interface.get_instances(mypluginclass_name_filter)
print(filtered_plugins[0].name) # doctest: +SKIP

Or make a function based filter

11

pluginmanager Documentation, Release 0.1.8

create a custom plugin class
class Plugin(pluginmanager.IPlugin):

def __init__(self, name):
self.name = name

create a function based filter
def custom_filter(plugins):

result = []
for plugin in plugins:

if plugin.name == 'good plugin':
result.append(plugin)

return result

plugin_interface = pluginmanager.PluginInterface()
plugin_interface.add_plugins([Plugin('good plugin'),

Plugin('bad plugin')])

filtered_plugins = plugin_interface.get_instances(mypluginclass_name_filter)
print(filtered_plugins[0].name)

5.1 API Reference

5.1.1 PluginInterface

class pluginmanager.PluginInterface(**kwargs)

add_blacklisted_directories(directories, rm_black_dirs_from_stored_dirs=True)
Adds directories to be blacklisted. Blacklisted directories will not be returned or searched recursively
when calling the collect_directories method.

directories may be a single instance or an iterable. Recommend passing in absolute paths, but method will
try to convert to absolute paths based on the current working directory.

If remove_from_stored_directories is true, all directories will be removed from internal state.

add_blacklisted_filepaths(filepaths, remove_from_stored=True)
Add filepaths to blacklisted filepaths. If remove_from_stored is True, any filepaths in internal state will be
automatically removed.

add_blacklisted_plugins(plugins)
add blacklisted plugins. plugins may be a single object or iterable.

add_file_filters(file_filters)
Adds file_filters to the internal file filters. file_filters can be single object or iterable.

add_module_plugin_filters(module_plugin_filters)
Adds module_plugin_filters to the internal module filters. May be a single object or an iterable.

Every module filters must be a callable and take in a list of plugins and their associated names.

add_plugin_directories(paths, except_blacklisted=True)
Adds directories to the set of plugin directories.

directories may be either a single object or a iterable.

directories can be relative paths, but will be converted into absolute paths based on the current working
directory.

12 Chapter 5. Filter Instances

pluginmanager Documentation, Release 0.1.8

if except_blacklisted is True all directories in that are blacklisted will be removed

add_plugin_filepaths(filepaths, except_blacklisted=True)
Adds filepaths to internal state. Recommend passing in absolute filepaths. Method will attempt to convert
to absolute paths if they are not already.

filepaths can be a single object or an iterable

If except_blacklisted is True, all filepaths that have been blacklisted will not be added.

add_plugins(plugins)
Adds plugins to the internal state. plugins may be a single object or an iterable.

If the instance member instantiate_classes in the underlying member plugin_manager is True and the
plugins have class instances in them, attempts to instatiate the classes. Default is True

This can be checked/changed by:

plugin_interface.plugin_manager.instantiate_classes

If the instance member unique_instances in the underlying member plugin_manager is True and duplicate
instances are passed in, this method will not track the new instances internally. Default is True

This can be checked/changed by:

plugin_interface.plugin_manager.unique_instances

add_to_loaded_modules(modules)
Manually add in modules to be tracked by the module manager.

modules may be a single object or an iterable.

get_blacklisted_directories()
Returns the set of the blacklisted directories.

get_blacklisted_filepaths()
Returns the blacklisted filepaths as a set object.

get_blacklisted_plugins()
gets blacklisted plugins tracked in the internal state Returns a list object.

get_file_filters(filter_function=None)
Gets the file filters. filter_function, can be a user defined filter. Should be callable and return a list.

get_instances(filter_function=<class ‘pluginmanager.iplugin.IPlugin’>)
Gets instances out of the internal state using the default filter supplied in filter_function. By default, it is
the class IPlugin.

Can optionally pass in a list or tuple of classes in for filter_function which will accomplish the same goal.

lastly, a callable can be passed in, however it is up to the user to determine if the objects are instances or
not.

get_loaded_modules()
Returns all modules loaded by this instance.

get_module_plugin_filters(filter_function=None)
Gets the internal module filters. Returns a list object.

If supplied, the filter_function should take in a single list argument and return back a list. filter_function is
designed to given the option for a custom filter on the module filters.

get_plugin_directories()
Returns the plugin directories in a set object

5.1. API Reference 13

pluginmanager Documentation, Release 0.1.8

get_plugin_filepaths()
returns the plugin filepaths tracked internally as a set object.

get_plugins(filter_function=None)
Gets out the plugins from the internal state. Returns a list object.

If the optional filter_function is supplied, applies the filter function to the arguments before returning them.
Filters should be callable and take a list argument of plugins.

remove_blacklisted_directories(directories)
Attempts to remove the directories from the set of blacklisted directories. If a particular directory is not
found in the set of blacklisted, method will continue on silently.

directories may be a single instance or an iterable. Recommend passing in absolute paths. Method will try
to convert to an absolute path if it is not already using the current working directory.

remove_blacklisted_filepaths(filepaths)
Removes filepaths from blacklisted filepaths. filepaths may be a single filepath or iterable of filepaths.
recommend passing in absolute filepaths but method will attempt to convert to absolute filepaths based on
current working directory.

remove_blacklisted_plugins(plugins)
removes plugins from the blacklisted plugins. plugins may be a single object or iterable.

remove_file_filters(file_filters)
Removes the file_filters from the internal state. file_filters can be a single object or an iterable.

remove_module_plugin_filters(module_plugin_filters)
Removes module_plugin_filters from the internal module filters. If the filters are not found in the internal
representation, the function passes on silently.

module_plugin_filters may be a single object or an iterable.

remove_plugin_directories(paths)
Removes any directories from the set of plugin directories.

directories may be a single object or an iterable.

Recommend passing in all paths as absolute, but the method will attemmpt to convert all paths to absolute
if they are not already based on the current working directory.

remove_plugin_filepaths(filepaths)
Removes filepaths from internal state. Recommend passing in absolute filepaths. Method will attempt to
convert to absolute paths if not passed in.

filepaths can be a single object or an iterable.

remove_plugins(plugins)
removes plugins from the internal state

plugins may be a single object or an iterable.

set_blacklisted_directories(directories, rm_black_dirs_from_stored_dirs=True)
Sets the directories to be blacklisted. Blacklisted directories will not be returned or searched recursively
when calling collect_directories.

This will replace the previously stored set of blacklisted paths.

directories may be a single instance or an iterable. Recommend passing in absolute paths. Method will try
to convert to absolute path based on current working directory.

set_blacklisted_filepaths(filepaths, remove_from_stored=True)
Sets internal blacklisted filepaths to filepaths. If remove_from_stored is True, any filepaths in internal state
will be automatically removed.

14 Chapter 5. Filter Instances

pluginmanager Documentation, Release 0.1.8

set_blacklisted_plugins(plugins)
sets blacklisted plugins. plugins may be a single object or iterable.

set_file_filters(file_filters)
Sets internal file filters to file_filters by tossing old state. file_filters can be single object or iterable.

set_module_plugin_filters(module_plugin_filters)
Sets the internal module filters to module_plugin_filters module_plugin_filters may be a single object or
an iterable.

Every module filters must be a callable and take in a list of plugins and their associated names.

set_plugin_directories(paths, except_blacklisted=True)
Sets the plugin directories to directories. This will delete the previous state stored in self.plugin_directories
in favor of the directories passed in.

directories may be either a single object or an iterable.

directories can contain relative paths but will be converted into absolute paths based on the current working
directory.

if except_blacklisted is True all directories in blacklisted that are blacklisted will be removed

set_plugin_filepaths(filepaths, except_blacklisted=True)
Sets internal state to filepaths. Recommend passing in absolute filepaths. Method will attempt to convert
to absolute paths if they are not already.

filepaths can be a single object or an iterable.

If except_blacklisted is True, all filepaths that have been blacklisted will not be set.

set_plugins(plugins)
sets plugins to the internal state. If the instance member instantiate_classes in the underlying member
plugin_manager is True and the plugins have class instances in them, attempts to instatiate the classes.
The default is True

This can be checked/changed by:

plugin_interface.plugin_manager.instantiate_classes

If the instance member unique_instances in the underlying member plugin_manager is True and duplicate
instances are passed in, this method will not track the new instances internally. The default is True

This can be checked/changed by:

plugin_interface.plugin_manager.unique_instances

track_site_package_paths()
A helper method to add all of the site packages tracked by python to the set of plugin directories.

NOTE that if using a virtualenv, there is an outstanding bug with the method used here. While there is a
workaround implemented, when using a virutalenv this method WILL NOT track every single path tracked
by python. See: https://github.com/pypa/virtualenv/issues/355

5.1.2 FileManager

class pluginmanager.FileManager(file_filters=None, plugin_filepaths=None, black-
listed_filepaths=None)

FileManager manages the file filter state and is responible for collecting filepaths from a set of directories and
filtering the files through the filters. Without file filters, this class acts as a passthrough, collecting and returning
every file in a given directory.

5.1. API Reference 15

https://github.com/pypa/virtualenv/issues/355

pluginmanager Documentation, Release 0.1.8

FileManager can also optionally manage the plugin filepath state through the use of the add/get/set plugin
filepaths methods. Note that plugin interface is not automatically set up this way, although it is relatively trivial
to do.

add_blacklisted_filepaths(filepaths, remove_from_stored=True)
Add filepaths to blacklisted filepaths. If remove_from_stored is True, any filepaths in plugin_filepaths will
be automatically removed.

Recommend passing in absolute filepaths but method will attempt to convert to absolute filepaths based on
current working directory.

add_file_filters(file_filters)
Adds file_filters to the internal file filters. file_filters can be single object or iterable.

add_plugin_filepaths(filepaths, except_blacklisted=True)
Adds filepaths to the self.plugin_filepaths. Recommend passing in absolute filepaths. Method will attempt
to convert to absolute paths if they are not already.

filepaths can be a single object or an iterable

If except_blacklisted is True, all filepaths that have been blacklisted will not be added.

collect_filepaths(directories)
Collects and returns every filepath from each directory in directories that is filtered through the file_filters.
If no file_filters are present, passes every file in directory as a result. Always returns a set object

directories can be a object or an iterable. Recommend using absolute paths.

get_blacklisted_filepaths()
Returns the blacklisted filepaths as a set object.

get_file_filters(filter_function=None)
Gets the file filters. filter_function, can be a user defined filter. Should be callable and return a list.

get_plugin_filepaths()
returns the plugin filepaths tracked internally as a set object.

remove_blacklisted_filepaths(filepaths)
Removes filepaths from blacklisted filepaths

Recommend passing in absolute filepaths but method will attempt to convert to absolute filepaths based on
current working directory.

remove_file_filters(file_filters)
Removes the file_filters from the internal state. file_filters can be a single object or an iterable.

remove_plugin_filepaths(filepaths)
Removes filepaths from self.plugin_filepaths. Recommend passing in absolute filepaths. Method will
attempt to convert to absolute paths if not passed in.

filepaths can be a single object or an iterable.

set_blacklisted_filepaths(filepaths, remove_from_stored=True)
Sets internal blacklisted filepaths to filepaths. If remove_from_stored is True, any filepaths in
self.plugin_filepaths will be automatically removed.

Recommend passing in absolute filepaths but method will attempt to convert to absolute filepaths based on
current working directory.

set_file_filters(file_filters)
Sets internal file filters to file_filters by tossing old state. file_filters can be single object or iterable.

16 Chapter 5. Filter Instances

pluginmanager Documentation, Release 0.1.8

set_plugin_filepaths(filepaths, except_blacklisted=True)
Sets filepaths to the self.plugin_filepaths. Recommend passing in absolute filepaths. Method will attempt
to convert to absolute paths if they are not already.

filepaths can be a single object or an iterable.

If except_blacklisted is True, all filepaths that have been blacklisted will not be set.

5.1.3 DirectoryManager

class pluginmanager.DirectoryManager(plugin_directories=None, recursive=True, black-
listed_directories=None)

DirectoryManager manages the recursive search state and can optionally manage directory state. The default
implementation of pluginmanager uses DirectoryManager to manage the directory state.

DirectoryManager contains a directory blacklist, which can be used to stop from collecting from uninteresting
directories.

DirectoryManager manages directory state through the add/get/set directories methods.

NOTE: When calling collect_directories the directories must be explicitly passed into the method call. This is
to avoid tight coupling from the internal state and promote reuse at the Interface level.

add_blacklisted_directories(directories, remove_from_stored_directories=True)
Adds directories to be blacklisted. Blacklisted directories will not be returned or searched recursively
when calling the collect_directories method.

directories may be a single instance or an iterable. Recommend passing in absolute paths, but method will
try to convert to absolute paths based on the current working directory.

If remove_from_stored_directories is true, all directories will be removed from self.plugin_directories

add_directories(directories, except_blacklisted=True)
Adds directories to the set of plugin directories.

directories may be either a single object or a iterable.

directories can be relative paths, but will be converted into absolute paths based on the current working
directory.

if except_blacklisted is True all directories in self.blacklisted_directories will be removed

add_site_packages_paths()
A helper method to add all of the site packages tracked by python to the set of plugin directories.

NOTE that if using a virtualenv, there is an outstanding bug with the method used here. While there is a
workaround implemented, when using a virutalenv this method WILL NOT track every single path tracked
by python. See: https://github.com/pypa/virtualenv/issues/355

collect_directories(directories)
Collects all the directories into a set object.

If self.recursive is set to True this method will iterate through and return all of the directories and the
subdirectories found from directories that are not blacklisted.

if self.recursive is set to False this will return all the directories that are not balcklisted.

directories may be either a single object or an iterable. Recommend passing in absolute paths instead of
relative. collect_directories will attempt to convert directories to absolute paths if they are not already.

get_blacklisted_directories()
Returns the set of the blacklisted directories.

5.1. API Reference 17

https://github.com/pypa/virtualenv/issues/355

pluginmanager Documentation, Release 0.1.8

get_directories()
Returns the plugin directories in a set object

remove_blacklisted_directories(directories)
Attempts to remove the directories from the set of blacklisted directories. If a particular directory is not
found in the set of blacklisted, method will continue on silently.

directories may be a single instance or an iterable. Recommend passing in absolute paths. Method will try
to convert to an absolute path if it is not already using the current working directory.

remove_directories(directories)
Removes any directories from the set of plugin directories.

directories may be a single object or an iterable.

Recommend passing in all paths as absolute, but the method will attemmpt to convert all paths to absolute
if they are not already based on the current working directory.

set_blacklisted_directories(directories, remove_from_stored_directories=True)
Sets the directories to be blacklisted. Blacklisted directories will not be returned or searched recursively
when calling collect_directories.

This will replace the previously stored set of blacklisted paths.

directories may be a single instance or an iterable. Recommend passing in absolute paths. Method will try
to convert to absolute path based on current working directory.

set_directories(directories, except_blacklisted=True)
Sets the plugin directories to directories. This will delete the previous state stored in self.plugin_directories
in favor of the directories passed in.

directories may be either a single object or an iterable.

directories can contain relative paths but will be converted into absolute paths based on the current working
directory.

if except_blacklisted is True all directories in self.blacklisted_directories will be removed

5.1.4 ModuleManager

class pluginmanager.ModuleManager(module_plugin_filters=None)
ModuleManager manages the module plugin filter state and is responsible for both loading the modules from
source code and collecting the plugins from each of the modules.

ModuleManager can also optionally manage modules explicitly through the use of the add/get/set loaded mod-
ules methods. The default implementation is hardwired to use the tracked loaded modules if no modules are
passed into the collect_plugins method.

add_module_plugin_filters(module_plugin_filters)
Adds module_plugin_filters to the internal module filters. May be a single object or an iterable.

Every module filters must be a callable and take in a list of plugins and their associated names.

add_to_loaded_modules(modules)
Manually add in modules to be tracked by the module manager.

modules may be a single object or an iterable.

collect_plugins(modules=None)
Collects all the plugins from modules. If modules is None, collects the plugins from the loaded modules.

All plugins are passed through the module filters, if any are any, and returned as a list.

18 Chapter 5. Filter Instances

pluginmanager Documentation, Release 0.1.8

get_loaded_modules()
Returns all modules loaded by this instance.

get_module_plugin_filters(filter_function=None)
Gets the internal module filters. Returns a list object.

If supplied, the filter_function should take in a single list argument and return back a list. filter_function is
designed to given the option for a custom filter on the module filters.

load_modules(filepaths)
Loads the modules from their filepaths. A filepath may be a directory filepath if there is an __init__.py file
in the directory.

If a filepath errors, the exception will be caught and logged in the logger.

Returns a list of modules.

remove_module_plugin_filters(module_plugin_filters)
Removes module_plugin_filters from the internal module filters. If the filters are not found in the internal
representation, the function passes on silently.

module_plugin_filters may be a single object or an iterable.

set_module_plugin_filters(module_plugin_filters)
Sets the internal module filters to module_plugin_filters module_plugin_filters may be a single object or
an iterable.

Every module filters must be a callable and take in a list of plugins and their associated names.

5.1.5 PluginManager

class pluginmanager.PluginManager(unique_instances=True, instantiate_classes=True, plug-
ins=None, blacklisted_plugins=None)

PluginManager manages the plugin state. It can automatically instantiate classes and enforce uniqueness, which
it does by default.

activate_plugins()
helper method that attempts to activate plugins checks to see if plugin has method call before calling it.

add_blacklisted_plugins(plugins)
add blacklisted plugins. plugins may be a single object or iterable.

add_plugins(plugins)
Adds plugins to the internal state. plugins may be a single object or an iterable.

If instantiate_classes is True and the plugins have class instances in them, attempts to instatiate the classes.

If unique_instances is True and duplicate instances are passed in, this method will not track the new
instances internally.

deactivate_plugins()
helper method that attempts to deactivate plugins. checks to see if plugin has method call before calling it.

get_blacklisted_plugins()
gets blacklisted plugins tracked in the internal state Returns a list object.

get_instances(filter_function=<class ‘pluginmanager.iplugin.IPlugin’>)
Gets instances out of the internal state using the default filter supplied in filter_function. By default, it is
the class IPlugin.

Can optionally pass in a list or tuple of classes in for filter_function which will accomplish the same goal.

5.1. API Reference 19

pluginmanager Documentation, Release 0.1.8

lastly, a callable can be passed in, however it is up to the user to determine if the objects are instances or
not.

get_plugins(filter_function=None)
Gets out the plugins from the internal state. Returns a list object. If the optional filter_function is supplied,
applies the filter function to the arguments before returning them. Filters should be callable and take a list
argument of plugins.

register_classes(classes)
Register classes as plugins that are not subclassed from IPlugin. classes may be a single object or an
iterable.

remove_blacklisted_plugins(plugins)
removes plugins from the blacklisted plugins. plugins may be a single object or iterable.

remove_instance(instances)
removes instances from the internal state.

Note that this method is syntatic sugar for the remove_plugins acts as a passthrough for that function.
instances may be a single object or an iterable

remove_plugins(plugins)
removes plugins from the internal state

plugins may be a single object or an iterable.

set_blacklisted_plugins(plugins)
sets blacklisted plugins. plugins may be a single object or iterable.

set_plugins(plugins)
sets plugins to the internal state. plugins may be a single object or an iterable.

If instatntiate_classes is True and the plugins have class instances in them, attempts to instatiate the classes.

If unique_instances is True and duplicate instances are passed in, this method will not track the new
instances internally.

20 Chapter 5. Filter Instances

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

21

pluginmanager Documentation, Release 0.1.8

22 Chapter 6. Indices and tables

Index

A
activate_plugins() (pluginmanager.PluginManager

method), 19
add_blacklisted_directories() (pluginman-

ager.DirectoryManager method), 17
add_blacklisted_directories() (pluginman-

ager.PluginInterface method), 12
add_blacklisted_filepaths() (pluginmanager.FileManager

method), 16
add_blacklisted_filepaths() (pluginman-

ager.PluginInterface method), 12
add_blacklisted_plugins() (pluginman-

ager.PluginInterface method), 12
add_blacklisted_plugins() (pluginman-

ager.PluginManager method), 19
add_directories() (pluginmanager.DirectoryManager

method), 17
add_file_filters() (pluginmanager.FileManager method),

16
add_file_filters() (pluginmanager.PluginInterface

method), 12
add_module_plugin_filters() (pluginman-

ager.ModuleManager method), 18
add_module_plugin_filters() (pluginman-

ager.PluginInterface method), 12
add_plugin_directories() (pluginmanager.PluginInterface

method), 12
add_plugin_filepaths() (pluginmanager.FileManager

method), 16
add_plugin_filepaths() (pluginmanager.PluginInterface

method), 13
add_plugins() (pluginmanager.PluginInterface method),

13
add_plugins() (pluginmanager.PluginManager method),

19
add_site_packages_paths() (pluginman-

ager.DirectoryManager method), 17
add_to_loaded_modules() (pluginman-

ager.ModuleManager method), 18
add_to_loaded_modules() (pluginman-

ager.PluginInterface method), 13

C
collect_directories() (pluginmanager.DirectoryManager

method), 17
collect_filepaths() (pluginmanager.FileManager method),

16
collect_plugins() (pluginmanager.ModuleManager

method), 18

D
deactivate_plugins() (pluginmanager.PluginManager

method), 19
DirectoryManager (class in pluginmanager), 17

F
FileManager (class in pluginmanager), 15

G
get_blacklisted_directories() (pluginman-

ager.DirectoryManager method), 17
get_blacklisted_directories() (pluginman-

ager.PluginInterface method), 13
get_blacklisted_filepaths() (pluginmanager.FileManager

method), 16
get_blacklisted_filepaths() (pluginman-

ager.PluginInterface method), 13
get_blacklisted_plugins() (pluginman-

ager.PluginInterface method), 13
get_blacklisted_plugins() (pluginman-

ager.PluginManager method), 19
get_directories() (pluginmanager.DirectoryManager

method), 17
get_file_filters() (pluginmanager.FileManager method),

16
get_file_filters() (pluginmanager.PluginInterface

method), 13
get_instances() (pluginmanager.PluginInterface method),

13

23

pluginmanager Documentation, Release 0.1.8

get_instances() (pluginmanager.PluginManager method),
19

get_loaded_modules() (pluginmanager.ModuleManager
method), 18

get_loaded_modules() (pluginmanager.PluginInterface
method), 13

get_module_plugin_filters() (pluginman-
ager.ModuleManager method), 19

get_module_plugin_filters() (pluginman-
ager.PluginInterface method), 13

get_plugin_directories() (pluginmanager.PluginInterface
method), 13

get_plugin_filepaths() (pluginmanager.FileManager
method), 16

get_plugin_filepaths() (pluginmanager.PluginInterface
method), 13

get_plugins() (pluginmanager.PluginInterface method),
14

get_plugins() (pluginmanager.PluginManager method),
20

L
load_modules() (pluginmanager.ModuleManager

method), 19

M
ModuleManager (class in pluginmanager), 18

P
PluginInterface (class in pluginmanager), 12
PluginManager (class in pluginmanager), 19

R
register_classes() (pluginmanager.PluginManager

method), 20
remove_blacklisted_directories() (pluginman-

ager.DirectoryManager method), 18
remove_blacklisted_directories() (pluginman-

ager.PluginInterface method), 14
remove_blacklisted_filepaths() (pluginman-

ager.FileManager method), 16
remove_blacklisted_filepaths() (pluginman-

ager.PluginInterface method), 14
remove_blacklisted_plugins() (pluginman-

ager.PluginInterface method), 14
remove_blacklisted_plugins() (pluginman-

ager.PluginManager method), 20
remove_directories() (pluginmanager.DirectoryManager

method), 18
remove_file_filters() (pluginmanager.FileManager

method), 16
remove_file_filters() (pluginmanager.PluginInterface

method), 14

remove_instance() (pluginmanager.PluginManager
method), 20

remove_module_plugin_filters() (pluginman-
ager.ModuleManager method), 19

remove_module_plugin_filters() (pluginman-
ager.PluginInterface method), 14

remove_plugin_directories() (pluginman-
ager.PluginInterface method), 14

remove_plugin_filepaths() (pluginmanager.FileManager
method), 16

remove_plugin_filepaths() (pluginman-
ager.PluginInterface method), 14

remove_plugins() (pluginmanager.PluginInterface
method), 14

remove_plugins() (pluginmanager.PluginManager
method), 20

S
set_blacklisted_directories() (pluginman-

ager.DirectoryManager method), 18
set_blacklisted_directories() (pluginman-

ager.PluginInterface method), 14
set_blacklisted_filepaths() (pluginmanager.FileManager

method), 16
set_blacklisted_filepaths() (pluginman-

ager.PluginInterface method), 14
set_blacklisted_plugins() (pluginmanager.PluginInterface

method), 14
set_blacklisted_plugins() (pluginmanager.PluginManager

method), 20
set_directories() (pluginmanager.DirectoryManager

method), 18
set_file_filters() (pluginmanager.FileManager method),

16
set_file_filters() (pluginmanager.PluginInterface method),

15
set_module_plugin_filters() (pluginman-

ager.ModuleManager method), 19
set_module_plugin_filters() (pluginman-

ager.PluginInterface method), 15
set_plugin_directories() (pluginmanager.PluginInterface

method), 15
set_plugin_filepaths() (pluginmanager.FileManager

method), 16
set_plugin_filepaths() (pluginmanager.PluginInterface

method), 15
set_plugins() (pluginmanager.PluginInterface method),

15
set_plugins() (pluginmanager.PluginManager method),

20

T
track_site_package_paths() (pluginman-

ager.PluginInterface method), 15

24 Index

	Installation
	Quickstart
	Custom Plugins
	Add Plugins Manually
	Filter Instances
	API Reference

	Indices and tables

